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NOTESIntroduction
Steroids organize, reorganize, and activate the 
developing, juvenile, and adult CNS and are thus 
considered critical modulators of brain and behavior 
throughout the vertebrate lifespan (Gurney and 
Konishi, 1980; Breedlove and Arnold, 1981; 
MacLusky and Naftolin, 1981; Arnold and Gorski, 
1984; McEwen, 2002; McEwen and Milner, 2017). 
Estrogens like 17β-estradiol (E2) are known 
organizers of masculine and feminine sexual behavior 
(Gurney and Konishi, 1980; MacLusky and Naftolin, 
1981; Adkins-Regan and Ascenzi, 1990), although 
they also activate juvenile and adult behaviors in 
both sexes. Indeed, the range of physiological and 
behavioral endpoints affected by E2 has increased 
considerably and now includes, but is not limited 
to, the regulation of copulation, aggression, mood, 
balance, learning, and memory. Included in this list is 
a more recently discovered role for this steroid in the 
regulation of neuroplasticity and the preservation of 
neural circuits.

Influence of E2 on the Injured Brain
We have now learned that, in addition to E2-
mediated plasticity of the normal brain, the injured 
brain is profoundly affected by this steroid. Indeed, 
premenopausal women have a lower risk of stroke 
compared with age-matched men (Barrett-Connor 
and Bush, 1991), and hormone replacement has 
been reported to decrease the risk of neurotrauma 
associated with cardiovascular disease (Grady et 
al., 1992). Interestingly, following traumatic brain 
injury (TBI), although there is no sex difference in 
the duration of unconsciousness following injury, 
the predicted outcome and recovery of females are 
better than for males (Groswasser et al., 1998). 
Taken together, these data suggest the possibility 
that endocrine factors may be responsible for some 
aspects of protection associated with neurotrauma.

In support, animal studies strongly suggest a role 
for E2 in neuroprotection and brain injury. Hall 
and colleagues (1991) reported lower levels of 
necrosis in females relative to males following 
experimental ischemia in gerbils, and embolic 
infarcts in rats (Nagpal et al., 1996). This bias also 
holds true for mice following medial carotid artery 
occlusion (Delpy et al., 2005; Brown et al., 2010; 
Fairbanks et al., 2012; Liu and McCullough, 2012). 
Further, infarcts from strokelike injuries are larger 
in metestrus rodents compared with those in estrus 
(high E2) and are inversely related to circulating E2 
levels (Sohrabji and Williams, 2013). Additionally, 
ovariectomy increases subsequent infarct size relative 
to sham surgeries, and infarct sizes increase further 

the longer the animal is deprived of ovarian estrogens 
(Selvamani and Sohrabji, 2010).

Thus, the data reveal a neuroprotective effect of 
circulating E2 following brain trauma in multiple 
species that may involve several cellular mechanisms, 
including cell turnover. In many vertebrates, E2 is 
a well-established regulator of adult neurogenesis, 
neuronal survival, and neuronal death. E2 is an 
effective protectant across a broad range of neural 
insults. As many in vitro and in vivo studies have 
found, E2 protects neurons against cell damage 
and death such as that caused by serum deprivation 
(Green et al., 1996), glutamate (Mize et al., 2003), 
excitotoxicity (Garcia-Segura et al., 1999a), or 
mechanical injury (Peterson et al., 2001). Indeed, E2 
is neuroprotective in several experimental models, 
including stroke and multiple sclerosis (Brown et 
al., 2010), and involves the action of estrogens on 
apoptotic and inflammatory pathways (Delpy et 
al., 2005). We are now beginning to learn that the 
source of this steroid is not limited to the periphery, 
but also involves an increase in neural synthesis of 
E2, particularly following damage to the brain.

Induction and consequences of  
injury-associated aromatase 
expression in reactive astrocytes
E2 is synthesized in many tissues, including the 
ovaries, adipose tissue, and placenta (Simpson et al., 
2002). The brain also synthesizes E2 via the neuronal 
expression of aromatase (E-synthase) (MacLusky and 
Naftolin, 1981; Peterson et al., 2004). Neuronal 
aromatization has been intensely studied in 
many vertebrates because of its pivotal role in the 
organization and activation of reproductive behaviors 
(MacLusky and Naftolin, 1981; Balthazart et al., 
1983; Balthazart and Schumacher, 1984; Adkins-
Regan and Ascenzi, 1990). However, the previous 
decade has taught us much about aromatization in 
nonneuronal cells and the role that glial-derived 
E2 plays in neuroprotection (Garcia-Segura and 
McCarthy, 2004; Saldanha et al., 2010, 2013).

In mammals and birds, various forms of neural insult 
result in a dramatic upregulation of aromatase in 
reactive astrocytes at the site of damage (Azcoitia et al., 
2002; Garcia-Segura and McCarthy, 2004; Saldanha 
et al., 2010). Specifically, excitotoxic damage to the 
hippocampus, a stab wound to the cerebral cortex, or 
a penetrating wound to the entopallium all induce 
astrocytic aromatase expression in rats and birds 
(Garcia-Segura et al., 1999b; Peterson et al., 2001, 
2004; Azcoitia et al., 2002; Rau et al., 2003; Wynne 
and Saldanha, 2004; Saldanha et al., 2005; Wynne 
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NOTESet al., 2008). The upregulation of aromatase (and 
resultant E2 provision) is neuroprotective, as site-
specific aromatase inhibition increases (Wynne and 
Saldanha 2004) and E2 administration decreases 
(Saldanha et al., 2005) the extent of damage after 
mechanical injury and other neural insults (Saldanha 
et al., 2013). More specifically, injection of the 
aromatase inhibitor fadrozole results in larger injuries 
and more apoptosis relative to the vehicle alone 
(Azcoitia et al., 2002; Wynne and Saldanha 2004; 
Wynne et al., 2008). In the zebra finch, the inhibitory 
influence of local aromatization on apoptosis is 
potent enough to completely mask the wave of 
secondary degeneration consistently observed in the 
injured mammalian brain (Benkovic et al., 2006). 
This wave of secondary degeneration, however, is 
clearly observable upon aromatase inhibition in the 
injured songbird brain (Wynne et al., 2008). The 
influence of induced aromatization on indices of 
degeneration is similar but not identical in the rodent 
brain. Aromatase expression is induced in astrocytes 
following various forms of insult in the rodent brain 
(Azcoitia et al., 2003; Garcia-Segura and Melcangi 
2006; Arevalo et al., 2015). Further, pharmacological 
or genetic inhibition of aromatase results in greater 
neuropathy following mechanical brain damage in 
rodents (Azcoitia et al., 2001). These data suggest 
that in multiple species, the induction of aromatase 
is key in controlling brain damage following neural 
insult.

In contrast, aromatase inhibition with concomitant 
replacement with E2 dramatically reverses 
the aforementioned effects in songbirds with 
corresponding decreases in the size of injury and 
lower levels of cell death, including apoptosis 
(Saldanha et al., 2005). In agreement, peripheral 
or central administration of E2 has been found 
neuroprotective in rats and mice (Garcia-Segura 
and McCarthy, 2004). The protective effects of E2 
provision also involve mechanisms that may repair 
damaged tissue, as evidenced by the observation in 
the songbird that E2 replacement around sites of a 
penetrating central injury increases cytogenesis and 
neurogenesis (Walters et al., 2011).

This influence on multiple indices of cell turnover 
(most if not all of which may preserve and/or 
rebuild neural circuits) provides a promising target 
for therapies that seek to limit neurodegeneration 
and promote recovery following TBI. In fact, 
understanding the specific insult-dependent signal 
that is responsible for rapidly inducing aromatase 
expression and E2 provision may be key to developing 
such therapies.

The aforementioned studies have laid the foundation 
for a recent expansion in the literature about the role 
of sex, steroids, and their mechanism of function 
following TBI (Gibson et al., 2008; Berry et al., 
2009; Herson et al., 2009; Chakrabarti et al., 2015; 
Brotfain et al., 2016). In general, the data all point 
to increased resilience following TBI in women 
compared with men (Ponsford et al., 2008; Yeung et 
al., 2011), a pattern also reflected in several studies 
in rodent models (Sarkari et al., 2010; Shahrokhi et 
al., 2010; Day et al., 2013). Indeed, neuroprotective 
estrogens during TBI appear to work via the more 
recently discovered membrane form of the receptor, 
G-protein coupled estrogen receptor-1 (GPER1), 
which provides a mechanism for rapid effects of these 
steroids on various aspects of neuroplasticity (Day et 
al., 2013; Wang et al., 2017). The neuroprotective 
effects of E2 are echoed by similar effects of 
progesterone in rodents (Feeser and Loria, 2011; 
Stein, 2013), although these patterns are not well 
supported by more recent clinical trials in humans 
(Lin et al., 2015; Stein, 2015; Zeng et al., 2015).

Brain injury may induce aromatase 
expression in astrocytes via 
alternative transcripts
What is responsible for aromatase expression in 
reactive astrocytes following neural insult? Our 
laboratory first decided to take a molecular approach 
to answering this question by entertaining the 
hypothesis that the aromatase transcript expressed in 
astrocytes following brain damage could be a novel 
transcript variant induced only by factors associated 
with neurotrauma. The number of genes for aromatase 
varies across vertebrates. Humans, mice, and zebra 
finches have one gene that, owing to variance 
in promotors and/or splice events, is expressed 
differentially across tissues (Ramachandran et al., 
1999). For example, Yague and colleagues (2006) 
reported at least four different isoforms of exon 1 in 
humans. Zebrafish, goldfish, and pigs have multiple 
copies of the cyp19 (aromatase) gene, and these are 
also differentially expressed in tissues, including 
ovary and brain (Robic et al., 2014). Importantly, 
all these genes, splice variants, and tissue-specific 
promotors make a single, well-conserved protein 
product that varies between 50 kD and 55 kD in size.

Given that multiple aromatase isoforms could 
produce the same protein product, Wynne and 
colleagues (2008) tested the hypothesis that the 
single zebra finch gene was alternatively spliced in 
ovarian follicular cells, neurons, and astrocytes. In 
the zebra finch, a single aromatase gene at Exon 1 
is alternatively spliced and is expressed differentially 
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NOTESin the brain (exon 1a) and ovary (exon 1b) 
(Ramachandran et al., 1999). After successfully 
discriminating between the two known transcripts 
using PCR, we then used overlapping primers along 
with 5' and 3' RACE (rapid amplification of cDNA 
ends) to isolate the entire product of the aromatase 
transcript specifically upregulated by injury (Wynne 
et al., 2008). Upon sequencing, this product was 
found to be exactly the same as the known brain 
transcript (containing exon 1a). These data suggest 
that the neural expression of aromatase occurred 
via the expression of identical transcripts in both 
neurons and astrocytes.

Brain injury is accompanied by a host of neural 
responses including, but not limited to, cell death and 
neuroinflammation. Either (or both) these processes 
could involve signaling molecules that may also serve 
as inducers of aromatase in astrocytes. Importantly, 
the almost invariable coincidence of these processes 
makes it very difficult to separate them. However, 
inducing inflammation in the absence of substantial 
cell death proved to be a more rewarding avenue of 
pursuit in our search for factors that induce astrocytic 
aromatase expression.

Inflammation induces aromatase 
expression
In very general terms, brain damage is characterized 
by two phases, the first of which results in tissue 
damage and cell death from the force of injury. 
The second phase involves inflammatory signals, 
including increases in cytokines, chemokines, and 
prostaglandins, that can occur within minutes of 
injury and last for months (Rothwell and Strijbos, 
1995; Ghirnikar et al., 1998; Marciano et al., 2002). 
Although the initial activation of inflammation is 
neuroprotective, the chronic activation can lead to 
increased brain damage via breakage of the blood-
brain barrier, production of reactive oxygen species, 
or the amplification of proinflammatory signaling.

Inflammatory processes themselves may play an 
inductive role in the expression of aromatase 
following penetrating brain injury. Major 
proinflammatory signals, which include cytokines, 
prostaglandin E2 (PGE2), and NF-κB, have been 
shown to regulate aromatase expression in the 
periphery. More specifically, inflammatory signals 
regulate aromatase in normal and malignant 
breast tissue (Purohit et al., 1995; Singh et al., 
1997; Purohit et al., 2005; Morris et al., 2011). It 
is hypothesized that cyclooxygenase-2 (COX-2)–
derived PGE2 stimulates PKA (protein kinase A) 
production, which results in cyp19 transcription 

and thereby increases in aromatase expression. The 
proinflammatory cytokine interleukin-6 (IL-6) has 
been shown to regulate aromatase expression and 
E2 synthesis within tumors in endometrial cancer 
cells (Che et al., 2014). IL-6 has also been shown 
to increase aromatase expression in other forms of 
cancer, including cervical and non-small-cell lung 
carcinoma (Irahara et al., 2006; Veerapaneni et al., 
2009; Miki et al., 2010).

Although much evidence focuses on the regulation of 
aromatase by inflammatory signals in the periphery, 
further evidence suggests that central inflammation 
is capable of regulating central aromatase expression. 
In the neonatal rat, administration of PGE2 increases 
aromatase and E2 content in the developing rat 
cerebellum, and treatment with the COX inhibitor 
indomethacin prevents this effect, with dramatic 
effects on dendritic morphology and neurophysiology 
(Dean et al., 2012a,b). Thus, local COX activity and 
consequent PGE2 synthesis can regulate aromatase 
activity in the developing mammalian brain.

Inflammation also induces glial aromatase 
expression in brain injury models. An experiment 
done in our lab found that application of the toxin 
phytohemagglutinin (PHA) induces glial aromatase 
expression in the absence of detectable cell death 
(Duncan and Saldanha, 2011). However, because 
PHA stimulates multiple components of the 
inflammatory pathway, including the stimulation of 
macrophages, T-cells, cytokines, and prostaglandins, 
the specific signal that induces glial aromatase 
remained unclear (Phillips et al., 1978; Duncan and 
Saldanha, 2011). Given the previous data in neonatal 
rats, we hypothesized that in zebra finches, COX 
activity may be necessary for the induction of glial 
aromatase and consequent E2 synthesis following a 
penetrating brain injury.

The induction of aromatase following 
brain injury: the influence of sex
To test this hypothesis, we administered indo-
methacin, a nonspecific COX-1/2 inhibitor, during 
a penetrating brain injury in adult male and female 
zebra finches (Pedersen et al., 2017). We found that 
COX activity is necessary for injury-induced E2 and 
is detectable in temporally distinct patterns between 
sexes. First, we measured central PGE2 content at 6 
h or 24 h after injury. At both time points, PGE2 
was decreased in the hemisphere treated with 
indomethacin, suggesting that our treatment was 
effective at both time points. However, the temporal 
pattern of aromatase induction following brain injury 
appears to differ between the sexes. More specifically, 
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NOTES6 h after injury, there is no evidence of injury-induced 
aromatase expression or a change in local E2 levels 
in males. However, females at the same time point 
displayed robust increases in E2. This induction of 
local E2 is severely curtailed by the administration 
of indomethacin, suggesting that COX activity is 
necessary for injury-induced aromatization (Mehos 
et al., 2015; Pedersen et al., 2017). The effect of 
indomethacin on aromatase expression and central 
E2 content is evident in males, however, at 24 
h postinjury. Indeed, in males, COX inhibition 
prevents the increase of aromatase and E2 content 
following brain injury at this time point. Interestingly, 
also at this time (and despite lower PGE2 levels), in 
females the E2 content around injuries injected with 
indomethacin did not differ from E2 levels around 
injuries treated with vehicle. These data strongly 
suggest that aspects of injury-induced inflammatory 
signaling are in part responsible for the induction of 
E2 following brain damage. The factors that sustain 
injury-induced aromatase expression in either sex is 
unknown.

The temporal difference in the COX-dependent 
induction of aromatase expression may reflect 
a basic sex difference in the induction patterns 
of glial aromatase. Previous reports from our lab 
found that females induce glial aromatase faster 
than males following a penetrating brain injury to 
the entopallium (Saldanha et al., 2013). Females 
have inductions of glial aromatase as soon as 2 h 
postinjury, whereas they are not evident in males 
until 24 h. Interestingly, by 24 h, the sex difference 
disappears, and both males and females have similar 
numbers of aromatase-expressing cells around the 
site of damage. A similar female-biased sex effect 
occurred following penetrating injury to the zebra 
finch cerebellum (Mirzatoni et al., 2010). The result 
of indomethacin preventing the induction of E2 in 
a temporally distinct, sex-specific manner may be a 
reflection of a sex difference in the time course of 
aromatase induction. Current work in our lab is 
exploring mechanisms underlying this sex difference.

Multiple reports from our lab have found basal and 
injury-induced sex differences in cytokine expression 
(Saldanha et al., 2013; Pedersen et al., 2016). 
For example, following injury to the entopallium, 
females induced glial aromatase faster than males 
while having larger increases in IL-1β (Saldanha et 
al., 2013). It is difficult to dissect the time course of 
proinflammatory signals, such as cytokines and PGE2, 
after brain injury. However, these sex differences in 
the time course of cytokine and PGE2 induction 

following injury may be important to investigate. 
This is of special significance given the sex difference 
between basal and induced inflammatory signals 
following injury, and given that inflammation seems 
to regulate aromatase and E2 expression. We have 
now begun to understand that the inductive role of 
inflammatory signaling on aromatization appears to 
be part of a reciprocal relationship as local increases 
in estrogens are responsible for decreases in chronic 
neuroinflammation.

Astrocytic aromatization decreases 
indices of neuroinflammation
Sex steroids can dramatically influence inflammation, 
and the evidence strongly suggests that E2 can 
exacerbate or inhibit several indices of inflammation 
in a diverse set of tissues. Indeed, the chronic 
inflammatory conditions that accompany several 
human diseases, including rheumatoid arthritis, 
osteoporosis, asthma, endometriosis, and obesity, 
are strongly influenced by E2. However, although 
E2 exacerbates inflammation in endometriosis and 
asthma (Bulun et al., 2012; Keselman and Heller, 
2015), the data suggest a strong anti-inflammatory 
role for this steroid in rheumatoid arthritis and 
osteoporosis (Sapir-Koren and Livshits, 2017). 
Hypotheses explaining this differential influence 
across tissues abound and are beyond the scope of this 
review; however, across many species, there appear to 
be consistent reports of an anti-inflammatory role for 
E2 in the acute regulation of several components of 
the immune cascade.

We have found that the anti-inflammatory effect of 
E2 extends into the traumatized brain. As mentioned 
earlier, mechanical damage to the finch brain 
increases local E2 by about fourfold (Mehos et al., 
2015). We queried the role of induced aromatization 
following brain damage by performing bilateral 
injuries in adult birds. One hemisphere received 
the aromatase inhibitor fadrozole, whereas the 
contralateral hemisphere received vehicle (Pedersen 
et al., 2016). Twenty-four hours later, we found 
exaggerated levels of IL1-β and COX-2 transcription 
in the hemisphere injected with fadrozole relative 
to vehicle. These data suggest that the inhibition of 
induced aromatization during brain damage results 
in a sustained level of inflammation. In agreement, 
levels of prostaglandin E2 were elevated in the 
hemisphere injected with fadrozole relative to the 
vehicle-treated contralateral hemisphere, suggesting 
that local aromatization may be responsible for the 
anti-inflammatory effects observed.
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NOTESTo test the E2 dependency of the effect above, we 
inflicted bilateral penetrating injuries and injected 
the aromatase inhibitor fadrozole into adult zebra 
finches of both sexes. In one hemisphere, however, 
we concurrently injected E2 to assess the potential 
local influence of this steroid on multiple indices 
of inflammation. In the hemisphere injured in 
the presence of E2, the expression of COX-2 was 
lower relative to the contralateral side (Pedersen 
et al., 2016). This expression apparently influenced 
prostaglandin levels, as hemispheres with E2 also had 
lower levels of PGE2 (Pedersen et al., 2016). These 
data strongly support an anti-inflammatory role for 
E2 during brain injury.

Sex differences in E2 modulation  
of neuroinflammation following 
brain injury
Previous studies have revealed a strong interaction 
between estrogens and the innate immune system. 
Resident macrophages isolated from female mice are 
more plentiful and express higher levels of toll-like 
receptors compared with those in males (Scotland et 
al., 2011), perhaps suggesting a higher sensitivity of 
the female immune system. Indeed, tumor necrosis 
factor alpha (TNF-α) and IL-1β increase in women 
with low circulating E2 as a result of either natural 
(Pfeilschifter et al., 2002) or surgical menopause 
(Pacifici et al., 1991). These sex differences appear to 
be caused by differences in circulating E2; for example, 
ovariectomized mice have higher neural cytokine 
expression following peripheral endotoxin treatment 
relative to sham controls (Brown et al., 2010), 
suggesting an anti-inflammatory role for circulating 
E2. In agreement, indices of inflammation are higher 
in postmenopausal women and ovariectomized 
mice compared with premenopausal, age-matched 
controls and intact animals, respectively. Specifically, 
the expression and secretion of TNF-α, IL-1β, and 
IL-6 are higher at times of low circulating E2 relative 
to controls, as is the expression of their cognate 
receptors (Pfeilschifter et al., 2002). The present data 
extend these findings to the brain by demonstrating 
a role for injury-induced aromatization within the 
CNS—one that involves a potent inhibition of 
multiple components of the inflammatory cascade 
within neural tissue.

There appear to be differences in the anti-inflammatory 
effects of E2 between the sexes. Upon aromatase 
inhibition, injury-associated levels of TNF-α and IL-
1β are higher in females than in controls, but only 
TNF-α remains high in males. In partial agreement, 

replacement with E2 lowers TNF-α in males and IL-1β 
in females, but not vice versa. These data suggest that 
the initial portions of the inflammatory cascade may 
be influenced by aromatization differently between 
sexes. It is important to point out, however, that 
regardless of these differences in cytokine expression, 
downstream inflammatory signaling does not appear 
to be sex-specific. Indeed, the inhibition of aromatase 
and E2 replacement exaggerate and mitigate injury-
associated COX expression in both sexes (Pedersen 
et al., 2016).

Previous studies have hypothesized that cytokines 
may serve different biological functions in men 
and women (Lynch et al., 1994). Thus, it is likely 
that E2 manipulation may affect inflammation in a 
sexually differentiated manner. Experiments that 
vary the severities of injury and time points of injury 
need to be explored in order to increase confidence 
in this interpretation. However, therapies that seek 
to control injury-associated inflammation may need 
to be tailored to these important sex differences in 
the temporal and cytokine-specific pattern of neural 
changes following various types of insult.

Conclusion
Although much work had focused on the 
neuroprotective role of glial aromatase and 
consequent E2 synthesis, the mechanisms regulating 
this influence were unknown. We have presented a 
novel relationship between immune and endocrine 
systems in the brain, which appears to be sexually 
differentiated. These latent sex differences, however, 
ultimately achieve the same result: the induction of 
astrocytic aromatization of E2 and consequent anti-
inflammatory effect of E2, via the decrease in PGE2.

This feedback between neuroimmune and 
neuroendocrine signaling may serve as a unique model 
of neuroprotection. The release of inflammatory 
factors following brain injury can exacerbate 
neurodegeneration (Rothwell and Strijbos, 1995; 
Ghirnikar et al., 1998; Denes et al., 2010). However, 
these inflammatory factors have the ability to shift 
from neurodegenerative to neuroprotective via 
PGE2-dependant increases in aromatase and E2, 
which decrease inflammatory signaling. This ability 
may be important to exploit in a therapeutic context, 
given that chronic elevation of inflammatory 
signaling is notable in many disorders, including 
depression, Alzheimer’s disease, Parkinson’s disease, 
stroke, and TBI (Perry, 2004; Turgeon et al., 2006; 
Perry et al., 2007).
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