
 

Module 4 Resource List: Protocols and Analysis 

Guide 
The resources in the protocols and analysis guide below were selected by Madeline Lancaster, Aparna 

Bhaduri, and Madeline Andrews, faculty from Module 4 of Stem Cells and Reprogramming Methods for 

Neuroscience: An SfN Training Series.  

 

Overview of Selected Organoid Generation Protocols 

 

 

 

 

 



 

Links to Useful Step-By-Step Protocols and Protocol Papers 

 

Generation of Cerebral Organoids from Human Pluripotent Stem Cells 

The original Lancaster et. al. protocol. 

 

 

Lancaster Lab Resources Page 

This site is continually being updated with improved protocols and help with organoid analysis. 

 

 

Feeder-Free, Xeno-Free Generation of Cortical Spheroids From Human Pluripotent Stem Cells 

Generation and Assembly of Human Brain Region-Specific Three-Dimensional Cultures 

Two protocols for cortical spheroids. 

 

Detailed Analysis Guide Including Annotated Code Examples 

 

Below are the methods behind the data analysis presented in the Module 4 video, “Using Organoids and 

Single Cell RNA Sequencing Approaches to Study Human Cortical Development.” 

 

10X Capture and Sequencing 

 

Single-cell capture was performed following the 10X v2 Chromium manufacturer’s instructions. In each 

case, 10,000 cells were targeted for capture and 12 cycles of amplification for each the cDNA 

amplification and library amplification were performed. Libraries were sequenced as per manufacturer 

recommendation on a NovaSeq S2 flow cell. 

  

Clustering 

 

Clustering was performed as previously described. Prior to clustering, batch correction was performed in 

the spirit of Peng, et al Cell 2019. Briefly, each set of cells within a batch were normalized to the highest 

expressing gene, making the range of expression from 0 to 1. These values were multiplied by the average 

number of counts within the batch. These normalized datasets were piped into Seurat v2 (Butler, et al 

Nature Biotechnology 2018), where cells with less than 500 genes per cell or greater than 10% of reads 

aligning to mitochondrial genes being discarded. Normalized counts matrices were log2 transformed, and 

variable genes were calculated using default Seurat parameters. Data was scaled in the space of these 

variables, and batch was regressed out. Principal component analysis was performed using FastPCA, and 

significant PCs were identified using the formula outlined in Shekhar et al Cell 2016. In the space of these 

significant PCs, the k=10 nearest neighbors were identified as per the RANN R package. The distances 

between these neighbors was weighted by their Jaccard distance, and louvain clustering was performed 

https://dx.doi.org/10.1038%2Fnprot.2014.158
https://www2.mrc-lmb.cam.ac.uk/groups/lancaster/resources/
https://protocolexchange.researchsquare.com/article/nprot-7083/v1
https://doi.org/10.1038/s41596-018-0032-7


 

using the igraph R package. If any clusters contained only 1 cell, the process was repeated with k=11 and 

up until no clusters contained only 1 cell. Cluster markers and tSNE plots were generated with Seurat 

package default parameters. 

  

Cell Type Annotations 

 

Primary cell type annotations of clusters were performed by comparison to previously annotated cell 

types (primarily Nowakowski et al Science 2017), and when a repository of substantial matching was not 

available, a combination of literature-based annotation of layer or maturation stage identity was used. 

When a cluster was substantially enriched based upon an age or an areal metadata property, this empirical 

observation was used to inform the annotation. Organoid cell types were first annotated by their similarity 

to primary cell clusters (using correlation analysis described below), if the correspondence was at or 

above 0.4 and only one primary cell type had such a high correspondence, the primary cell type was 

applied to the organoid cluster. If the correspondence was between 0.2 – 0.4 and included only one 

similarity, that cell type was used to identify the organoid cell type unless there was an obvious 

discrepancy in top marker gene expression between the two clusters. If no correlation was above 0.2, 

literature annotations or unknown identities were assigned. If an organoid cluster correlated equally well 

(within 10%) of multiple primary subtypes of the same or similar cell type, “pan” identity was assigned. 

  

Correlation Analysis 

 

Correlation analysis was generated in the space of marker genes. For each cluster, a marker specificity 

score was generated for each gene. This score equaled the ‘enrichment’ – log2(fold change) of the marker 

compared to other clusters – and the ‘specificity’ – the percent of the relevant cluster expressing the 

marker divided by the percent of other clusters expressing the marker. A matrix of all markers across all 

clusters was created for each individual dataset; if a marker was not expressed at all in a certain cluster, it 

was marked as 0. If a value was divided by 0 to calculate the score, the score was placed as a dummy 

score at 1500. Matrices between comparisons were correlated in the space of overlapping marker gene 

space using Pearson’s correlations. 

 

Additional Details for Correlation Analysis 

 

Example snippet of marker genes from Seurat Marker Gene Analysis: 

 

• The first column includes gene names, but they are often numbered if the gene is seen as a marker 

for multiple clusters, so we use the last column. The p-value and adjusted p-value calculation 

details can be found in the Seurat documentation. The avg_logFC indicates the log2(fold change) 

of the expression value of the gene in this cluster versus all other clusters. pct.1 represents the 



 

percent of cells in this cluster expressing the gene while pct.2 represents the percent of cells in the 

remaining clusters expressing the gene. 

• Example calculation of gene score using log2(fold change) and the specificity of the gene 

• This results in a gene score for every gene in every cluster, as seen below 

• From these scores, we can make a matrix for every cluster and every marker gene. We do this 

using a simple perl script on the text file, but this can be done in a number of alternative ways as 

well. The resulting matrix will have n genes in the column and k clusters in the rows. 

• To correlate this matrix to another dataset or itself to look for similarity, simply correlate the 

transposed matrix to another object. To correlate organoids to primary we used the following 

commands: 

markergenes <- intersect(colnames(organoids), colnames(primary)) 

correlated <- cor(t(organoids[,genes]), t(primary[,genes])) 

write.table(correlated, “organoid_vsprimary_correlation.txt”, sep= “\t”, quote=F, 

col.names=NA) 

• The resulting file can be visualized in Morpheus from the Broad Institute: 

https://software.broadinstitute.org/morpheus/  

  

Linear Mixed Models 

 

VariancePartition was used for linear mixed model analysis. Analysis was performed in a randomized 

subset of 50,000 genes in the space of expressed genes across the meta data properties. Age was used as a 

continuous variable and all other variables were assigned as discrete. 

   

WGCNA and Maturation Analysis 

 

WGCNA networks were calculated as previously described in 10,000 randomly chosen primary radial 

glia cells. These networks were applied to the remaining primary and organoid cells using the 

applyModule function. Pseudoage was calculated by taking networks that correlated highly to age in the 

10,000 cell subset and combining their genes into a single gene set. PCA was performed in this gene 

space in the full space of radial glia and the loading of the first principle component dictated the 

pseudoage. Please also see this WGCNA Tutorial. 

   

Implementations of WGCNA in single-cell RNA sequencing analysis: 

 

Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex 

Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution 

  

 

 

https://software.broadinstitute.org/morpheus/
https://doi.org/10.1186/s12859-016-1323-z
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://doi.org/10.1126/science.aap8809
https://doi.org/10.1016/j.cell.2019.01.017


 

Area Signatures 

 

Area signatures were obtained by performing pairwise differential expression between each of the seven 

cortical areas and the six remaining areas. Differential expression across all of the areas was combined, 

with a count of how many times a gene was differentially expressed in an area from each of the pairwise 

comparison. While combining the lists, the enrichment and specificity were averaged across all six 

analyses and multiplied by the number of times the gene appeared as a marker for an area of interest. This 

value, the “area specificity score” was compared across all areas. For any genes that were considered 

markers of multiple areas, the area with the highest area specificity score was allocated the gene as a 

marker, thus making all area markers unique to one area alone. This is how some areas have a higher 

percentage of cells assigned to another area other than their area or origin, and enables cleaner 

comparison of areal pattern emergence. Each set of area marker genes were designated as a network, and 

the correlation of each cell to this area was calculated by applyModules and calculating a module 

eigengene. After assignment, in order to normalize unequal module eigengene distributions, within a 

dataset the module eigengenes were normalized by area and the assigned area for a cell was the area for 

which that cell had the highest module eigengene. 

 

 

 




