Phone Fax Web (202) 962-4000 (202) 962-4941 SfN.org



# Module 2 Resource List: Direct Differentiation of Human iPS Cells into Neurons Using Transcription Factors

The resources below were selected by Nan Yang, faculty from Module 2 of Stem Cells and Reprogramming Methods for Neuroscience: An SfN Training Series. These resources supplement their presentation, "Direct Differentiation of Human iPS Cells into Neurons Using Transcription Factors."

**Direct Conversion of Fibroblasts to Functional Neurons by Defined Factors** 

**Induction of Human Neuronal Cells by Defined Transcription Factors** 

Transdifferentiation of Human Adult Peripheral Blood T Cells Into Neurons.

Rapid Conversion of Fibroblasts Into Functional Forebrain Gabaergic Interneurons by Directgenetic Reprogramming

Direct Generation of Functional Dopaminergic Neurons from Mouse and Human Fibroblasts

**Direct Conversion of Human Fibroblasts to Dopaminergic Neurons** 

**Direct Conversion of Human Fibroblasts to Induced Serotonergic Neurons** 

Generation of Functional Human Serotonergic Neurons from Fibroblasts

These studies lay the foundation for using transcription factor-directed somatic cell to neuronal lineage conversion for disease modeling work.

1121 14th Street NW Suite 1010 Washington, DC 20005 Phone Fax Web (202) 962-4000 (202) 962-4941 SfN.org

#### Generation of Human Striatal Neurons by Microrna-Dependent Direct Conversion of Fibroblasts

Microrna-Mediated Conversion of Human Fibroblasts to Neurons

**Small Molecules Take a Big Step by Converting Fibroblasts Into Neurons** 

Small-Molecule-Driven Direct Reprogramming of Mouse Fibroblasts into Functional Neurons

**Generation of Oligodendroglial Cells by Direct Lineage Conversion** 

<u>Transcription Factor–Mediated Reprogramming of Fibroblasts to Expandable, Myelinogenic Oligodendrocyte Progenitor Cells</u>

These studies use other small molecules to achieve direct conversion or convert fibroblasts to glial cells.

<u>Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and</u> Reveal Age-Related Nucleocytoplasmic Defects

Aging in a Dish: iPSC-Derived and Directly Induced Neurons for Studying Brain Aging and Age-Related Neurodegenerative Diseases

These papers demonstrate the advantage of using neurons generated by direct conversion from somatic cells to study age-related neurodegenerative disease.

# **Diverse Reprogramming Codes for Neuronal Identity**

### Myt1l Safeguards Neuronal Identity by Actively Repressing Many Non-Neuronal Fates

These papers demonstrate that in addition to its application in disease related studies, lineage-reprogramming studies provide a unique way to identify and study the transcriptional regulatory hierarchy for cell fate control.

1121 14th Street NW Suite 1010 Washington, DC 20005

Phone Fax Web (202) 962-4000 (202) 962-4941 SfN.org

## **Generation Of Pure Gabaergic Neurons By Transcription Factor Programming**

Rapid Single-Step Induction Of Functional Neurons From Human Pluripotent Stem Cells

<u>Direct Induction and Functional Maturation of Forebrain GABAergic Neurons from Human Pluripotent Stem Cells</u>

These studies use transcription factors to direct the differentiation of human ES/iPS cells to homogenous neuronal subtypes.

<u>Human Neuropsychiatric Disease Modeling Using Conditional Deletion Reveals Synaptic</u> Transmission Defects Caused by Heterozygous Mutations in NRXN1

**Autism-associated SHANK3 Haploinsufficiency Causes In Channelopathy in Human Neurons** 

The Fragile X Mutation Impairs Homeostatic Plasticity in Human Neurons by Blocking Synaptic Retinoic Acid Signaling

These publications provide a few examples using human ES/iPS cell induced neuronal (iN) cells.